半导体前道工艺检测设备

前道量检测设备:物理、功能性检查,提升良率,市场壁垒高筑

前道量检测运用于晶圆的加工制造过程,它是物理性、功能性的,用以检测每一步工艺后 产品的加工参数是否达到了设计的要求,并且查看晶圆表面上是否存在影响良率的缺陷, 确保将加工产线的良率控制在规定的水平之上。

1. 三种分类标准:检测目的、应用范畴、技术原理

按照不同的分类方法,集成电路可以被分成不同的类型。

1) 按照检测目的可以分为量测(Metrology)和缺陷检测(Defect Inspection)

2) 按照应用范畴主要可以分为关键尺寸测量(Optical Critical Dimension OCD)、薄膜的 厚度测量(Film Metrology)、套刻对准测量(Overlay Metrology)、光罩/掩膜检测(Reticle Inspection)、无图形晶圆检测(Non-patterned Wafer Inspection)、图形化晶圆检测 (Patterned Wafer Inspection)、缺陷复查(Review SEM)

3) 按技术原理可以分为光学检测设备(Optical Inspection Equipment),电子束检测设备 (E-beam Inspection Equipment)和其他检测设备

2. 检测目的分类:量测和检测,价值量随工艺技术同步提升

量测(Metrology)和检测(Inspection):

前道量检测根据检测目的可以细分为量测(Metrology)和检测(Inspection)。量测主要是 对薄膜厚度、关键尺寸、套准精度等制成尺寸和膜应力、掺杂浓度等材料性质进行测量, 以确保其符合参数设计要求;而缺陷检测主要用于识别并定位产品表面存在的杂质颗粒沾 污、机械划伤、晶圆图案缺陷等问题。

量测和缺陷检测对于半导体制造过程非常重要。半导体晶圆的整体制造过程有 400 至 600 个步骤,需要一到两个月内完成。如果流程早期出现任何缺陷,则后续耗时步骤中执行的 所有工作都将被浪费。因此,在半导体制造过程的物理量测和缺陷检测是其中的关键步骤, 用于确保良率和产量。新应用需求驱动了制程微缩和三维结构的升级,使得工艺步骤大幅 提升,成熟制程(以 45nm 为例)工艺步骤数大约需要 430 道到了先进制程(以 5nm 为 例)将会提升至 1250 道,工艺步骤将近提升了 3 倍;结构上来看包括 GAAFET、MRAM 等新一代的半导体工艺都是越来越复杂;虽然相较于制造设备,量测设备的技术门槛较低, 但是在数千道制程中,每一道制程的检测皆不能有差错,否则会显著影响芯片的成败。

量测(Metrology):

量测(Metrology)不仅指测量行为本身,而且指通过考虑误差和准确性而进行的测量,以 及测量设备的性能和机制。如果测量结果不在给定的规格范围内,则制造设备无法按设计 继续运行。

检测(Inspection)查找缺陷的位置坐标:

检测可以检测缺陷并指定其位置涉。主要用于使用检查设备来检查是否出现异质量情况, 如检测晶圆中存在灰尘或者颗粒污染等缺陷的过程。具体来说,它旨在查找缺陷的位置坐 标(X,Y)。

3. 应用范畴分类:关键尺寸、膜厚、套刻对准,光罩/掩膜、图形、缺陷复查等

3.1. 关键尺寸量测:监控线宽和孔径,实现精确误差测量

量测按应用可以主要分为关键尺寸量测,薄膜的厚度量测及套刻对准量测

1)关键尺寸量测(OCD-Optical Critical Dimension Metrology):

关键尺寸量测-半导体制程中最小线宽一般称之为关键尺寸,其变化是半导体制造工艺中 的关键。随着关键尺寸越来越小,容错率也越小,因此必须要尽可能的量测所有产品的线 宽,可见关键尺寸的量测重要性越发关键。

案例:在半导体晶圆的指定位置测量电路图案的线宽和孔径

3.2. 薄膜厚度量测:厚度、反射率、密度量测,鉴定和监控不同薄膜层

薄膜厚度量测(Film Metrology):

在整个制造工艺中硅片表面有多种不同类型的薄膜,包含金属、绝缘体、多晶硅、氮化硅 等材质。晶圆厂为生产可靠性较高的芯片时薄膜的质量成为提高成品率的关键,其中薄膜 的厚度、反射率、密度等都须要进行精准的量测。

案例:测量半导体晶圆表面薄膜的厚度

3.3. 套刻对准量测:高阶矫正光刻机、掩模和硅片位置误差,提高覆盖精度

套刻对准测量(Overlay Metrology):

套刻对准测量应用在光刻工艺后,主要是用于量测光刻机、掩模版和硅片的对准能力。量 测系统检查覆盖物的准确性(叠加工具)测量用于检查传输到晶圆上的第一层和第二层图案的射覆盖精度。

3.4. 光罩/掩模检测:捕获光罩缺陷和图案位置错误,降低缺陷引发风险

光罩/掩模检测(Reticle Inspection):

可以说,光罩/掩膜检测远比其他应用,例如无图案或图案晶圆检测重要。这是因为,虽 然裸晶圆或图案晶圆上的单个缺陷有可能损坏一个器件,但掩模版上的单个缺陷可能会摧 毁上千个器件。

在半导体器件生产中,零缺陷光罩(也称为光掩模或掩模)是实现芯片制造高良率的关键 因素之一,因为光罩上的缺陷或图案位置错误会被复制到产品晶圆上面的许多芯片中。光 罩的制造采用光罩基板,即镀了吸收薄膜的石英基板。优秀的光罩检测、量测和数据分析 系统产品能够协助光罩基板、光罩和 IC 制造商识别光罩缺陷和图案位置错误,以降低良率 风险。

通常,掩模在使用过程中很容易吸附粉尘颗粒,而较大粉尘颗粒很可能会直接影响掩模图 案的转印质量,如果不进行处理会进一步引起良率下降。因此,在利用掩模曝光后,通常 会利用集成掩模探测系统对掩模版进行检测,如果发现掩模版上存在超出规格的粉尘颗粒, 则处于光刻制程中的晶圆将会全部被返工。掩模检测系统工作原理可见下图:

Fab 中对掩模缺陷的检测分为在线和离线两种。在线检测是指每次曝光之前和之后对掩模 板表面检测。这通常是依靠光刻机中内置的检测单元来完成的。最常见的是集成在 ASML 系列光刻机上的掩模检测系统。IRISTM 对即将被使用的掩模或刚使用完毕后的掩模的正反 两面分别扫描,发现吸附在掩模上的颗粒,并报警。光刻工程师看到报警信号后做相应处 理。图 16 是 IRISTM 工作的原理图。在做颗粒扫描时,掩模沿 Y 方向运动由机械手控制, X 方向的扫描由激光束的移动来实现。完成一次 IRISTM 扫描的时间大约等价于 2 到 3 个晶 圆曝光的时间。通常对一批晶圆可以只做一次 IRISTM 扫描,这样可以减少占用生产的时 间,提高光刻机的产能。

离线检测是指定期地把掩模从系统中调出来做缺陷检测。检测的时间间隔可以在掩模版管 理系统中设定,也可以按使用的次数来决定是否做检测。半导体设备供应商提供专用设备 来做这种检测。离线检测的优点是分辨率高,有些检测设备还能对检测出来的缺陷做简单 处理。

光罩/掩模检测设备案例:

EUV 光罩/掩模检测:波长更短,检测灵敏度更高

传统的检查 EUV 光掩膜的方法主要是将深紫外光(DUV)应用于光源中,而极紫外(EUV)的波长较 DUV 更短,产品缺陷检测灵敏度更高。

EUV 掩模版的检测原理为:电磁波辐射到细小缺陷颗粒上被散射形成暗场,这样可以实现缺陷的检测,系统采用 364nm 的工作波长,对于基地大小为 88nm 的缺陷,检测可行度为97%。

EUV 光罩/掩膜检测市场,Lasertec 高度垄断

除了仅由ASML 提供的 EUV(极紫外光)光刻系统之外,三星电子和台积电之间在争夺超 微加工工艺所需设备的安全方面的竞争也越来越激烈。APMI(光化图案掩膜检查)系统 和制造掩膜的写入器就是最好的例子。这个设备是芯片制造的关键工具,当芯片制程小于 5 纳米时,它们将决定生产率和质量。

EUV 掩模的高科技检查系统能够检查基于复杂结构的 EUV 掩模,比目前使用 ArF 光源的检 查系统更精确,更紧密。这个新的检查系统在将掩模引入生产线之前和之后进行检查。业 界将此系统称为 APMI 系统。

EUV 光罩(半导体线路的光掩模版、掩膜版)检验设备最近几年需求增长尤其旺盛,在这 个领域,日本的 Lasertec Corp.是全球唯一的测试机制造商,Lasertec 公司持有全球市场 100% 的份额。2017 年,Lasertec 解决了 EUV 难题的关键部分,当时该公司创建了一款可以检查 空白 EUV 掩模内部缺陷的机器。2019 年 9 月,它又推出了可以对已经印有芯片设计的模 板进行相同处理的设备,从而又创建了另一个里程碑。

传统的检查 EUV 光掩膜的方法主要是将深紫外光(DUV)应用于光源中,而 EUV 的波长 较 DUV 更短,产品缺陷检测灵敏度更高。DUV 光虽然也可以应用于当下最先进的工艺 5 纳米中,但是 Lasertec 公司的经营企划室室长三泽祐太朗指出,“随着微缩化的发展,在 步入 2 纳米制程时,DUV 的感光度可能会不够充分”即,采用 EUV 光源的检测设备的需 求有望进一步增长。

根据彭博社的报道,Lasertec 股价自 2019 年初到 2020 年下旬,已增长了 550%。在其公布 的2020年7 月-9月三个月的财报显示,这三个月Lasertec 的销售额达到了131.65 亿日元, 而 2019 年同期的销售额则仅为 55.42 亿日元,增长了超过两倍。随着之后 5nm 制程的不 断推进,Lasertec 未来的盈利增长空间广阔。

3.5. 无图形晶圆检测:检出裸晶圆颗粒及缺陷,奠定图形化检测基础

无图形晶圆检测(Non-patterned Wafer Inspection):

图形化定义:图形化使用光刻法和光学掩膜工艺来刻印图形,在器件制造工艺的特定工序, 引导完成晶圆表面的材料沉积或清除。对于器件的每一层,在掩膜未覆盖的区域沉积或清 除材料,然后使用新的掩膜来处理下一层。按照这种方式来重复处理晶圆,由此生成多层 电路。

无图形化检测指在开始生产之前,裸晶圆在晶圆制造商处获得认证,半导体晶圆厂收到后 再次认证的检测的检测过程。

无图形晶圆检测系统用于晶圆制造商中的晶圆运输检验、晶圆进货检验以及使用虚拟裸晶 圆监控设备清洁度的设备状况检查。设备状况检查也由设备制造商在装运检查时和进货检查时执行。设备制造商使用光学检测系统检查晶圆和掩模板有无颗粒和其他类型的缺陷, 并确定这些缺陷在晶圆上的 X-Y 网格中的位置。

基本原理:

用于无图形晶圆缺陷检测的基本原理相对简单。激光束在旋转的晶圆表面进行径向扫描, 以确保光束投射到所有晶圆表面。激光从晶圆表面反射,就像从镜子反射一样,如上图所 示。这种类型的反射称为镜面反射。当激光束在晶圆表面遇到粒子或其他缺陷时,缺陷会 散射激光的一部分。可直接检测散射光(暗场照明)或反射光束(亮场照明)中强度的损 失。

由于没有图案,因此无需图像比较即可直接检测缺陷。当激光束投射到旋转晶圆的粒子/ 缺陷上时,光线将被探测器散射和探测。因此,检测到粒子/缺陷。从晶圆旋转角度和激光 束的半径位置,计算和记录了粒子/缺陷的位置坐标。镜面晶圆上的缺陷还包括晶体缺陷, 如 COP 以及颗粒。

晶圆的旋转位置和光束的径向位置决定了缺陷在晶圆表面的位置。在晶圆检测工具中,使 用 PMT 或 CCD 方式记录光强度,并生成晶圆表面的散射或反射强度图。此图提供有关 缺陷大小和位置的信息,以及由于颗粒污染等问题而导致的晶圆表面状况的信息。

3.6. 图形化晶圆检测:比较图像生成缺陷图,识别物理和高纵横比缺陷

图形化晶圆检测(Patterned Wafer Inspection):

应用材料公司表明,随着图形化和几何结构线宽的缩小,在早期技术节点不构成问题的瑕 疵,现在已成为“致命”的缺陷,或影响成品率的主要因素。

图形化晶圆的光学检测可采用明场照明、暗场照明,或两者的组合进行缺陷检测。此外, 电子束 (EB) 成像也用于缺陷检测,尤其是在光学成像效果较低的较小几何形状中。然 而,它非常缓慢,只在研发阶段使用。模纹晶圆检测系统将晶圆上的测试芯片图像与相邻 芯片(或已知无缺陷的"金"模片)的图像进行比较。缺陷的位置会生成缺陷图,类似于为 无图案晶圆生成的图。与无图案晶圆的检查一样,图形化晶圆检测需要精确且可重复的运 动控制,测试系统的晶圆级和光学元件同时移动。

3.7. 缺陷复查检测:放大缺陷图像进行甄别,提供依据优化制程工艺

缺陷复查检测 (Review SEM):

随着半导体集成电路工艺节点的推进,作为晶圆厂制程控制主力设备的光学缺陷检测设备 的解析度已无法满足大规模生产和先进制程开发需求,必须依靠更高分辨率的电子束复检 设备的进一步复查才能对缺陷进行清晰地图像成像和类型的甄别,从而为半导体制程工艺 工程师优化制程工艺提供依据。

缺陷复查是一种使用扫描电子显微镜 (SEM)检查晶圆上的缺陷。使用缺陷复查将半导体 晶圆缺陷检测系统检测到的缺陷放大为高放大倍率图像,以便对该图像进行检阅和分类。 缺陷复查设备主要与电子设备和其他半导体生产线的检测系统一起使用。

在缺陷检测系统中,将缺陷图像与相邻的模子图像(参考图像)进行比较,由于图像差异 (差值图像处理)而检测缺陷。与缺陷检测系统类似的缺陷复查设备通过与相邻模具的电 路模式进行比较来检测缺陷,并获得缺陷的正确位置。然后将缺陷移动到视场的中心,并 拍摄放大的照片。

缺陷复查设备通常工作流程:

1.使用检测系统检测出晶圆缺陷。检测系统列出缺陷的位置坐标,并输出到文件中。

2.检查出晶圆和检验结果的文件加载到缺陷复查设备中。

3.拍摄列表中缺陷的图像:

根据缺陷列表中的位置信息确定缺陷位置。缺陷的图像由缺陷复查设备决定是否复查缺陷。 有时,使用缺陷数据文件中的位置信息无法发现晶圆上的缺陷。由于各种错误,仅使用位 置信息不容易发现缺陷。

4. 技术原理分类:光学、电子束检测,应用互补,多方位检测

在前道工艺中,有很多类型的检测系统,其中包括电子束检测系统、光学明场检测系统和 光学暗场检测系统。一般来说,光学明场检测系统用于详细检查模式缺陷。光学暗场检测 系统可以高速检测,用于大量晶圆的缺陷检测。激光从晶圆表面反射,就像从镜子反射一 样。当激光束在晶圆表面遇到粒子或其他缺陷时,缺陷会散射激光的一部分。暗场直接检 测散射光,明场照明反射光束中强度的损失。电子束检测可提供材料对比度,其动态分辨 率范围比光学检测系统大得多。

光学检测、电子束检测两者在制程工艺的检测中应用互补。光学的特点在于快速与完整, 通常可以全天候进行检测,在需要实时检测以及离工艺机台较近甚至直接与工艺机台集成 的应用场景下就会使用光学检测,通过光的反射、衍射光谱进行测量,具备检测速度快、 成本低、范围广的优点;但是传统光学的波长是奈米等级,无法做非常精细的检测,所以 会再使用电子束做更精细的检测。电子束波长是皮米等级,可以高分辨率的采集图像进行 分类与分析。对于工艺的将测必须要精确评估,如果未检测到制程偏移和潜在良率问题, 会使得生产的产品无法使用,因此需要多项检测设备进行多方位的检测。

应用情况:

无图形晶圆检测:通常,暗场检测是无图形晶圆检测的首选,因为可以达到高栅格速度, 可实现高晶圆吞吐量。图形化晶圆检测是一个慢得多的过程。它使用明场和/或暗场成像, 具体取决于应用。

电子束 (EB) 成像也用于缺陷检测,尤其是在光学成像效果较低的较小几何形状中。电 子束检测可提供材料对比度,其动态分辨率范围比光学检测系统大得多。然而,电子束应 用受测量速度缓慢限制,因此主要在研发环境和工艺开发中对新技术进行鉴定。新的电子 束工具可用于 10 nm 及更低节点的缺陷检测应用,并且正在开发具有最多 100 列或测量 通道的多电子束工具。在电子束检测系统中,电子束被照射到晶圆表面,并检测出发射的 二次电子和背散射电子。此外,电子束检测系统根据器件内部布线的电导率,将二次电子 的量作为图像对比度(电压对比度)进行检测。如果检测到高纵横比接触孔底部的电导率, 可以检测到超薄厚度的 SiO2 残留物。

光学(明场,暗场),电子束检测都有其自身的功能,不过基本检测原理是相似的: 基本原理:随机缺陷通常由颗粒(如灰尘)引起,并且发生在随机位置,正如名称所暗示 的那样,随机缺陷在特定位置反复发生的可能性极低。因此,晶圆检测系统可以通过比较 相邻芯片(也称为 DIE)的图案图像获取差异来检测缺陷。

如下图:晶片上的图案被电子束或光沿管芯阵列捕获。通过比较下图中的图像(1)图像 (2)来检测缺陷。如果没有缺陷,则通过数字处理从图像(1)中减去图像(2)的得到 为零的结果。相反,如果裸片图像(2)的中存在缺陷,则该缺陷将保留(如图像(3)), 这个缺陷会被记录其位置坐标。

NEWS

新闻动态